MVP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction

Source: Acl 2023

Advisor: JIA-LING KOH Speaker: FAN-CHI-YU

Date:2023/09/05

Outline

- Introduction
- Method
- Experiment
- Conclusion

Introduction

Aspect Based Sentiment Analysis(ABSA)

Aims to **predict** tuples of **sentiment elements** of interest for a given text.

Review Sentence:

Fast and the battery life of this phone is great, but I'm unable to connect it to the WIFI.

```
Quadruple #1
```

A = NULL (implicit); C = Operation; O = Fast; S = Positive

Quadruple #2

A = Battery life; C = Battery; O = Great; S = Positive

Quadruple #3

A = WIFI; C = Network; O = NULL (implicit); S = Negative

Aspect Based Sentiment Analysis(ABSA)

The battery life of this phone is great.

\mathbf{Type}	Abbr	Task Name	Input	Output
	ATE	Aspect Term Extraction	S	a (battery life)
	OTE	Opinion Term Extraction	S	o (great)
	ACD	Aspect Category Detection	S	c (battery)
	AOCE	Aspect Opinion Co-Extraction	S	a (battery life), o (great)
Single	AOOE	Aspect-Oriented Opinion Extraction	S + a (battery life)	o (great)
	ABSC	Aspect-Based (Aspect-level) Sentiment Classification	S + a (battery life)	s (positive)
	COSC	Category-Oriented Sentiment Classification	S + c (battery)	s (positive)
	AOPE	Aspect Opinion Pair Extraction	S	(a, o) (battery life, great)
Pair	ASPE	Aspect Sentiment Pair Extraction	S	(a, s) (battery life, positive)
	CSPE	Category Sentiment Pair Extraction	S	(c, s) (battery, positive)
	ACSTE (TASD)	Aspect Category Sentiment Triplet Extraction or Target Aspect Sentiment Detection	S	(a, c, s) (battery life, battery, positive)
Triplet	AOSTE (ASTE)	Aspect Opinion Sentiment Triplet Extraction or Aspect Sentiment Triplet Extraction	S	(a, o, s) (battery life, great, positive)
Quad	ACOSQE	Aspect Category Opinion Sentiment Quadruple Extraction	S	(a, c, o, s) (battery life, battery, great, positive)

Neural Language Generation

Introduction(Aspect Sentiment Tuple Prediction)

Paraphrase(Nature Language Way)

Designs semantic templates filled with **fixed-order** elements of tuples as generation targets.

Input-1	The pasta yesterday was delicious!
Label-1	(c, a, o, p): (food quality, pasta, delicious, POS)
Û	Û
Target-1	Food quality is great because pasta is delicious

DLO(Order base)

 $O_i([AC] \ x_{ac}, [AT] \ x_{at}, [OT] \ x_{ot}, [SP] \ x_{sp}); i \in [1,24]$

Method

Method

Multi-view Prompting [A]sushi [C]food [O]love [A] [C] [0] [S] [S]great (sushi, I love food, the sushi [0] [S] [A] [C] [O]badly [A]sushi [C]food MvP [S]bad love, badly! POS) [A]sushi [C]food [C] [0] [S] [A] [O]love [S]great 1 Element Order-based Prompting 2 Multi-view Tuple Prediction 3 Aggregation

Element Order-based Prompt

Using element markers to represent the structure of information allows tokens to focus more on order.

If there have **multiple sentiment tuples** for an input sentence, we utilize [SSEP] to concatenate their final target sequence

Multi-view Training (Element Order Selection)

Choosing the potentially better-performing orders based on the average entropy of the candidate permutations on the training set.

$$S_{p_i} = \frac{\sum_{D} p(\boldsymbol{y_{p_i}}|\boldsymbol{x})}{|D|} \tag{1}$$

Multi-view Training (Training)

$$\mathcal{L}_{NLL} = -\mathbb{E} \log p(\boldsymbol{y}|\boldsymbol{x}) = -\mathbb{E} \sum_{t=1}^{T} \log p(\boldsymbol{y}_{t}|\boldsymbol{x}, \boldsymbol{y}_{< t})$$

$$P(\boldsymbol{y}_{t}|\{\boldsymbol{y}_{< t}\}) = \frac{\exp(S_{w})}{\sum_{w' \in V} \exp(S_{w'})} \quad \hat{\boldsymbol{y}}_{t} \quad \hat{\boldsymbol{y}}_{t+1} \quad \hat{\boldsymbol{y}}_{t+2} \quad \dots$$

$$Text Generation Model$$

$$\downarrow_{y_{t-4}} \quad y_{t-3} \quad y_{t-2} \quad y_{t-1} \quad \hat{\boldsymbol{y}}_{t} \quad \hat{\boldsymbol{y}}_{t+1} \quad \hat{$$

Multi-view Inference(Schema Constrained Generation)

We injects target schema **knowledge into the decoding** process.

Multi-view Inference(Results Aggregation)

Multi-task learning

- MVP (multi-task) obtains generalized ability among diverse tasks
- Let Main task can learn well

Experiment(Datasets)

• SemEval Datasets (Semantic analysis and Annotated datasets):

review	aspects_term	cat_obj	opinions_term	sematic polarity
< <null>> this unit is `` pretty `` and styli</null>	['unit']	{LAPTOP}	['pretty']	POS
< <null>> for now i 'm okay with upping the ex</null>	['device']	{LAPTOP}	['< <null>>']</null>	NEU
< <null>> seems unlikely but whatever , i ' II</null>	['< <null>>']</null>	{LAPTOP}	['< <null>>']</null>	NEU
< <null>>> this version has been my least favori</null>	['version']	{LAPTOP}	['least', 'favorite']	NEG
< <null>> - biggest disappointment is the track</null>	['track', 'pad']	{HARDWARE}	['disappointment']	NEG
<<null $>>$ should not of bought this chromebook .	['chromebook']	{LAPTOP}	['< <null>>']</null>	NEG
< <null>> after about 5 / 10 minutes of use the</null>	['screen']	{DISPLAY}	[ˈcrazyˈ]	NEG
< <null>> i can not stand the trackpad or the k</null>	['trackpad']	{KEYBOARD}	['< <null>>']</null>	NEG
< <null>> the keyboard is stiff and unresponsiv</null>	['keyboard']	{KEYBOARD}	['stiff']	NEG
< <null>>> the chromebook r 11 was hardly used a</null>	['chromebook', 'r', '11']	{LAPTOP}	['< <null>>']</null>	NEG
< <null>> one day it just would not power up .</null>	['< <null>>']</null>	{BATTERY}	['< <null>>']</null>	NEG

Generative methods

- Paraphrase
 - a. Designs semantic templates filled with **fixed-order** elements of tuples as generation targets.
- DLO:
 - a. The **order-free** property of the quadruplet based on templates.

Multi-tasking methods.

- Lego-ABSA:
 - a. Designs task prompts similar to T5.Assembling task prompts, like assembling **Lego** bricks.

Lego-ABSA

The proposed approach can train on simple tasks and transfer to difficult tasks by assembling task prompts, like assembling **Lego** bricks

Fig. 3: Assembling the sentiment analysis task like building with Lego blocks.

Methods	ASQP		ACOS		TASD		ASTE				AVG
	R15		Lap							R16	
Paraphrase (Zhang et al., 2021b)	46.93	57.93	43.51	<u>61.16</u>	63.06	71.97	61.13	72.03	62.56	71.70	61.20
DLO (Hu et al., 2022)										73.03	
LEGO-ABSA [†] (Gao et al., 2022)	46.10	57.60	-	-	62.30	71.80	62.20	73.70	64.40	69.90	-
MvP	51.04	60.39	43.92	61.54	64.53	72.76	63.33	74.05	65.89	73.48	63.09
MVP (multi-task) [†]	52.21	58.94	43.84	60.36	64.74	70.18	65.30	76.30	69.44	<u>73.10</u>	63.44

LAPCITITETIC	$(x_{ac}, x_{at}, x_{ot}, x_{sp})$		$(x_{ac}, x_{at}, x_{ot}, x_{sp})$		(x_{ac}, x_{at}, x_{sp})						
Methods	AS R15	QP R16	AC Lap	OS Rest	TA R15	SD R16	L14	AS'	TE R15	R16	AVG
Paraphrase (Zhang et al., 2021b)	46.93	57.93	43.51	61.16	63.06	71.97	61.13	72.03	62.56	71.70	61.20
DLO (Hu et al., 2022)	48.18	59.79	43.64	59.99	62.95	71.79	61.46	72.39	64.26	73.03	61.75
LEGO-ABSA [†] (Gao et al., 2022)	46.10	57.60	-	-1	62.30	71.80	62.20	73.70	64.40	69.90	-
MvP MvP (multi-task) [†]			43.92 43.84							73.48 73.10	

The MVP can **improve lot** at the opinion prediction

	c ac · ai	, , ot, , , sb,	(ac) (at)	·· 01, ·· sp	c ac	av * sp		(al)	ov **sp		
Methods	ASO R15	QP R16	AC Lap		TA R15	SD R16	L14	AS R14		R16	AVG
Paraphrase (Zhang et al., 2021b)	46.93	57.93	43.51	<u>61.16</u>	63.06	71.97	61.13	72.03	62.56	71.70	61.20
DLO (Hu et al., 2022)	48.18	<u>59.79</u>	43.64	59.99	62.95	71.79	61.46	72.39	64.26	73.03	61.75
LEGO-ABSA [†] (Gao et al., 2022)	46.10	57.60	-		62.30	71.80	62.20	73.70	64.40	69.90	-
MvP	51.04	60.39	43.92	61.54	64.53	72.76	63.33	74.05	65.89	73.48	63.09
MvP (multi-task) [†]	52.21	58.94	<u>43.84</u>	60.36	64.74	70.18	65.30	76.30	69.44	73.10	63.44

 $(x_{\alpha\alpha}, x_{\alpha\alpha}, x_{\alpha\alpha}, x_{\alpha\alpha})$

 $(x_{\alpha}, x_{\alpha}, x_{\alpha})$

 $(\chi_{at}, \chi_{ot}, \chi_{on})$

The MVP can **improve lot** at the opinion prediction

 $(x_{\alpha\alpha}, x_{\alpha\alpha}, x_{\alpha\alpha}, x_{\alpha\alpha})$

Experiment(Effect Analysis)

1. F1 decreases slightly after a certain number (between 7 and 15)

2. **Low-resource** setting **boost a lot**

Experiment(Ablation test)

- Constrained decoding significantly impacts text generation
- Random sampling outperforms Top-1 ranked, as it introduces variability and reduces model confusion.

		Mathada	AS	STE (L	14)	ASQP (R15)				
		Methods	1%	10%	100%	1%	10%	100%		
w/o Constrained deco	ding	MvP w/o cd	21.37	49.98	63.27	12.09	37.87	50.92		
Random Select one		MvP (rand)	27.32	51.02	62.50 62.48	13.56	37.18	49.84		
Select top one		MvP (rank)	25.98	49.98	62.48	13.38	37.45	49.98		
	_	MvP	28.37	52.33	63.33	13.46	38.48	51.04		

Cross-task transfer

Transfer brings further significant improvements, from triplets to quadruplets

	Methods	Transfer Source	1%	2%	5%	10%	20%	AVG
ASQP (R15)	DLO (transfer) MvP (transfer)	ASTE (R15) ASTE (R15)	26.28 28.69	28.72 33.93	35.94 40.08	39.48 43.10	42.92 45.09	34.67 38.18
ASTE (L14)	DLO (transfer) [‡] MvP (transfer) [‡]							51.60 53.68

Case Study1

Sentence: The restaurant offers an extensive wine list and an ambiance you won't forget. Gold: (wine list, drinks style_options, great, extensive), (ambiance, ambience general, great, won't forget) Tuples from 15 views: (wine list, drinks style_options, great, extensive) * 10 (ambiance, ambience general, great, won't forget) * 15 (restaurant, drinks style_options, great, extensive) * 5 Drop Final output: (wine list, drinks style_options, great, extensive) (ambiance, ambience general, great, won't forget) (ambiance, ambience general, great, won't forget) (ambiance, ambience general, great, won't forget)

- MVP handles well after filtering unreasonable tuples predicted
- MVP only outputs tuples considered important in most views

Case Study2

Example 2 (ACOS task) **Sentence**: I do like the screen on this, images are clean and crisp, enjoying the 4 gigs of ram which allow me to have a few more tab open. Gold: (screen, display general, great, like), (ram, memory general, great, enjoying), (screen, display general, great, clean), (screen, display general, great, crisp) **Tuples from 15 views: Final output:** (screen, display general, great, like) * 15 (screen, display general, great, like) (ram, memory general, great, enjoying) * 9 (ram, memory general, great, enjoying) Pick (images, display general, great, clean) * 8 (images, display general, great, clean) (images, display quality, great, crisp) * 8 (images, display quality, great, crisp) (images, display quality, great, clean) * 6 (ram, memory operation performance, great, enioving) * 6 (images, display general, great, crisp) * 6 (images, display design features, great, clean) * 1 Drop (images, display design features, great, crisp) * 1

Laptop dataset includes **121** categories that model get **confused** with similar **aspect categories**

Conclusion

Conclusion

1. **MVP** Improves aspect-level opinion information prediction by effective multi-view results aggregation.

2. **MVP** proposed Element order-based prompt learning method.

 Multi-tasking model substantially outperforms task-specific models on a variety of ABSA tasks.